hybrix: A Peer-to-Peer Token Protocol Across Multiple
Ledger Systems

Joachim de Koning, Rouke Pouw
20.02.2020

version 1.6

This is a free culture work, licensed under Creative Commons
Attribution Share-Alike (CC-BY-SA) version 4.0.

Abstract

A meta-protocol and blockchain integration solution in the form of a decentralized as-
set for transacting value across different digital currency systems would allow for ledger and
blockchain platforms to be used as a value transfer medium without needing any financial
intermediaries. Third party services currently assist users to exchange one form of digital
cash or asset for another, but a trusted third party is still required to mediate these transac-
tions. Decentralized exchanges mostly operate on a single chain or else solely between com-
patible ledgers or blockchains. We propose a solution to the problem of these isolated digital
currency systems using a meta-level transfer protocol with an extendable and modular de-
sign, making accessible any kind of ledger-based economy or other digital cash system for
cross-blockchain and inter-systemic transactions. Many ledger systems have their own form
of consensus mechanism. Instead of inventing yet another network infrastructure, the hybriz
protocol will enable using the data layer of the underlying infrastructure in conjunction with
its consensus mechanism. This makes it possible for instance to ’hijack’ ledger systems and
use their combined powers to create a truly cross-ledger asset, with all the benefits of the
underlying ecosystems. The underlying ecosystems will also benefit from hosting this proto-
col. Every hybriz protocol transaction yields profit to these respective ecosystems by paying

transaction fees to their network supporting miners and stakers.

1 Introduction

Before the inception of Bitcoin, commerce

on the Internet had come to rely almost ex-
clusively on financial institutions serving as
trusted third parties to process electronic pay-
ments. Since the start of the Bitcoin experi-
ment, online commerce has started to change,
since cryptocurrency payments incur lower
fees, and peer-to-peer payments open up on-
line commerce to people in developing coun-
tries '. However, large institutions are posi-
tioning themselves into finance, presenting
services that make the use of digital currency
easier. While touting decentralization, in re-
ality these organizations are trying to control

the flow of capital across the Internet, and
across the world.? Technically Bitcoin earlier
on had solved some of the problems of the re-
versibility of transactions and trust issues that
plagued online commerce, however, new play-
ers in the arena are offering replacements for
Bitcoin’s peer-to-peer payment solution. Some
of these replacements put buyers and sellers
at risk of having their financial interactions
being controlled, data harvested and mone-
tized.? Other decentralized asset technolo-
gies have been developed parallel to Bitcoin,
and out of it has grown an entire ecosystem
of decentralized finance. Strides have been
made in experimental and practical forms of
decentralized finance and autonomous con-

tractual governance.* However, regardless of
all these constructive developments, one can
observe large institutions like R3, IBM, Rip-
ple and the Libra Association attempting to
inject their influence back into online com-
merce, by creating pseudo-trustless and per-
missioned solutions for the exchange of value
and presenting these as secure and trustless
to the public.® Simultaneously, solutions pro-
posed by these organizations aim to create
profitable top-down enterprises, in which the
user becomes the customer and/or product of
new financial technology gatekeepers. What
is needed is a protocol for value transfer be-
tween distributed ledger systems that is open
by design, and not controlled by a central-
ized party. This protocol would provide users
for a way to move units of account across dis-
tributed ledgers in a truly decentralized way,
opening up the ability to exchange value on
ledger (e.g. on-chain) back to usable digi-

tal currency or token. This enables users to
transfer value between ledger systems trust-
lessly, and provides an alternative to central-
ized exchangers. In this paper, we propose a
solution to the value transfer problem across
different distributed ledgers by using a meta-
protocol for value distribution across multi-
ple decentralized ledger systems. This meta-
protocol utilizes the transaction attachment
or data field of the underlying blockchain and
these data blocks contain data about the rep-
resented value token and computational proof
of the chronological order of transactions.

2 Overview

Our proposal is to create a protocol - called
hybriz protocol - as a cross-ledger colored
coin, making it technically borderless and

not bound to a single ledger system. The
term “Colored Coins” loosely describes a
class of methods for representing and man-
aging real world assets on top of the Bitcoin
blockchain.® However, in our case we rede-
fine this term to describe a token that utilizes
any distributed digital ledger as its underlying

(1 A

A A

t t1
ledger systems ransactions

Figure 1: hybrix meta ledger

infrastructure. In developing this protocol it
would be beneficial to users that the resulting
technology is:

e open by design;
e not controlled by a centralized party;

e cnables any user to transfer value be-
tween ledger systems;

e provides the possibility for users to issue
tokens.

Challenges to a successful implementation of
the protocol are:

proper validation to avoid double spends;

sybil attacks on the validator network;

token squatting and index spamming;

51% attack on a single chain.

2.1 Framework

The hybriz protocol is a second-level token
protocol that can transact units of account
on a single ledger, or over multiple ledger
(e.g. blockchain) systems. Its transactions
are stored in a data block inside the attach-
ment section of a zero-value transaction on
any distributed ledger system. This gives its
users the advantage of moving units of ac-
count, ultimately value, to any ledger sys-
tem or blockchain that best suits their needs.
Transactions containing meta data pay the
usual fees denominated in the base currency

of the ledger to miners, forgers, or stakers in
order to register the meta transactions in the
blockchain. This means that the assets us-
ing the hybriz protocol (HRC1 tokens) ben-
efits from having a trusted and secure min-
ing, forging or staking network without the
need to re-create its own or use additional
resources. Bitcoin, Ethereum and other cryp-
tocurrencies have advanced features (such as
scripting and smart contracts) which enable
many users to create complex financial solu-
tions. The consensus of these solutions and
the manipulation of value is, however, con-
fined to the ledger on which they are imple-
mented. There are some cases where technolo-
gies (like atomic transactions) make it possi-
ble to connect distributed ledgers. Yet many
of these solutions need specific implementa-
tions and compatibilities that not all ledger
systems have on offer, and thus are limited
in scope. We solve this problem by denomi-
nating a common protocol that works on any
ledger.

2.2 Assumptions

The hybriz protocol uses no advanced features
of any specific ledger system. This avoids.it
becoming overly dependent on any single dis-
tributed ledger system. Many systems are a
moving target when it comes to development
of cutting edge technology, and future sup-
port for their advanced options is in no way
guaranteed. For the hybrix protocol to work,
we assume the following requirements to be
available on all ledgers. Ledger requirements:

1. immutability of past transactions

2. verifiable signing and authentication of
transactions

3. all transactions must be publicly avail-
able (in order to verify the transaction
chain)

4. transactions have
(a) a unique transaction id

(b) an attachment field for storing data

(c) source and target address(es)

2.3 Definitions

The definitions below are ordered according to
dependency on previous definitions.

intersystemic transaction A transaction
occurring between two distinct ledger sys-
tems.

entanglement Informational connection be-
tween two transactions on separate ledger
systems, that functionally relate them as
a cross-ledger transaction.

token recipe A data object containing the
necessary variables specifying the hybriz
token identifier, and economic rule set.

consensus mechanism The way in which
computer systems agree on the state of a
system - in our case a distributed ledger
and/or blockchain.

validator Network actor that analyses past
transactions and makes available the le-
gitimacy of these transactions according
to the rules of the system protocol.

VAAS Validation as a service is done by net-
work participants that offer to verify a
user balance for a fee.

double spend A transaction that illegiti-
mately increases the money supply in a
ledger system.

genesis hash A hash calculated by using the
recipe data containing a hybriz procotol
HRC1 token definition.

attachment The data included with a trans-
action, sometimes called message or -
in the case of Bitcoin and its derived
coins - OP_RETURN. Primarily used on
most ledger systems for annotation of the
transaction. In the hybriz protocol this
storage space is used to store protocol
data.

OP_RETURN An Bitcoin script opcode
used to mark a transaction output as

invalid. This makes it possible to store
data attached to the output in the Bit-
coin blockchain. Since any outputs with
OP_RETURN are provably unspendable,
OP_RETURN outputs can also be used
to burn bitcoins.” We hereafter refer to
the data field of such a transaction in this
whitepaper as attachment.

directed acyclic graph In graph theory a
directed acyclic graph is a finite directed
graph with no directed cycles. Blockchain
is an example of a DAG with no parallel
branches. A directed graph is acyclic if
and only if it has a topological ordering.

3 Intersystemic Transac-
tions

3.1 Structured Data on a Ledger

We define an electronic intersystemic to-

ken as a block of structured data that is in-
serted into the attachment section of a zero-
value transaction on a distributed ledger (e.g:
blockchain) system. This first layer ledger
will serve as the base for a meta ledger that
can span multiple different base ledgers. The
transaction may, or may not, require a fee
amount for using the underlying infrastruc-
ture of the base layer while the meta layer
will require no extra fees. The content of the
attachment of transaction on a base ledger
can be parsed into a second layer transaction
of the meta ledger. A parsing function p will
extract the required meta transaction details
from the base transactions attachment as well
as using details from the base transaction that
are still relevant (e.g. time, origin and target
of the transaction). Token ownership is se-
cured by the underlying ledger system every
time a transaction is done. Each owner trans-
fers their zero-value transaction containing
the token data to another owner by digitally
signing a hash of the previous transaction and
the current transaction. Only a user that con-
trols a ledger address has the ability to spend

Meta send Transaction

transaction id ——— transaction id

timestamp ——————— timestamp
source address ——» source address
target address ———> target address
amount 0 —— amount

attachment —— > attachment

L—— type end

Figure 2: The parsing function p parses the
attachment of the base transaction into the
required fields.

hybriz tokens on it. A payee can verify the
signatures to verify the chain of ownership.

3.2 Creating and Spending a To-
ken

The hybriz protocol is designed to function
over multiple ledgers. As seen in the figure 3,
the practical inception of a hybriz token oc-
curs when a recipe containing the identifier
and economic rule set is signed using the is-
suer’s private key @), and a verification hash
is stored on a public ledger @. After that,
the only thing that is added to the recipe

is the ledger symbol, and transaction hash

of where the verification hash can be found.
This is not limited to a single ledger, and can
be done for multiple ledgers simultaneously
if desired. Subsequently the token is minted
on the same (or on another) address using a
followup transaction @. This transaction con-
tains a reference to the genesis transaction
that preceded it on the same ledger system,
and the amount of units minted must adhere
to the emission rules specified in the rule set.
Now that the HRC1 token has been initialized
- in our example on BCH - it may be trans-
acted on the same ledger using a simple send
transaction @. This enables sending the to-
kens to other addresses on the same ledger
system.

accounts (s N v,)

10

recipe

native
& T
beam
L / U /U J

ledgers

Figure 3: cross-ledger entangled transactions

3.3 Other Types of Transactions tion and then choosing a branch that has not
yet been validated. By querying a validator
node users of the protocol can more rapidly
verify that a transaction is valid, instead of
having to crawl the entire transaction tree
themselves.

When a transaction contains more data than
a ledger system can handle in its attachment
storage space, the transaction may be split
up, and sent using a transaction accompa-
nied by tailing part transactions that com-
plete the contents of the entire operation @. . .
Using a swap transaction, HRC1 tokens can 4 Genesis of a h’yb'l"’l,iB As-
be switched for native tokens that can then be set

used on the chain for trading, or interacting

with smart contracts €. A swap transaction

is legitimate when the counterparty responds 4.1 Field Definitions

to a swap proposal using a signing trans-

action. Finally a burn transaction returns To instantiate an asset we need a commonly
spendable HRC1 token balance to address E shared method of defining its properties. This
on the Ethereum chain @). From there it can is needed to ensure all nodes know how to in-

again be spent or beamed to other ledgers. terpret the data on all the different ledgers,
Validators in the network can crawl through and decode the transactions into classed as-
the data in the public ledgers, starting from set groups and interpret accounting for the
the recipe itself, along the genesis transac- individually issued assets. What is needed is

a common recipe format that does not rely on
any single ledger system, yet can be validated
by way of immutable storage of its content
hash. Such a recipe will contain variables and
field definitions to specify the name of the
token, its economics and other details pertain-
ing to its rule set. These variables are stored
as field definitions in what we call a Genesis
Recipe. An example recipe follows.

"symbol": "hy.example",
"name": "Example hrcl token",
"info":"This is an example of a
hrcl cross-ledger
electronic token.",
"import":"hybrixProtocol",
"version":1,
"contract":123,
"mutable":true,
"burnProof": "btc:185b3...32db3",
"burnTargets": [
"btc:1Counter...",
"eth:0x000000..."
1,
"mutations":["btc:b4152...e9d10"],
"economy" : {
"supplyInitial":8000000,
"supplyFixed":true,
"factor":8
"mint":{
"allowed":true,
"chains": ["btc","eth"]
},
"send": {
"allowed":true,
"chains": ["btc","eth","waves",
"nxt","xem","ignis"],
"rules":{
"default":
{"fee":0.25%}

3,
"swap":{
"allowed":true,
"assets": ["btc","eth", "waves",
"nxt","xem","ignis"]
3,
},

"genesis":"btc:b4152...babcd,
eth:0x8al...0ael6"
}

When a recipe has been created, it is hashed
to create a proof that is registered on a ledger
using a genesis transaction. This transaction
proves the validity of the recipe that governs
the token. Each token must have an identifier
number that is unique. In case of a collision,
validators will only accept the recipe that was
proven first by way of the genesis transac-
tion. If allowed by the recipe, it is possible
for new tokens to be created by those other
than the initial issuer. This is done by burn-
ing assets on the underlying chain. In prin-
ciple the assets burned can only be rewarded
according to the rules defined in the recipe.
This ensures that price calculation of the burn
assets can best be done on the decentralized
exchanges, removing the need for an order-
book for the hybrixz protocol. When a recipe
is defined as being mutable, it is possible to
update it, and send a new genesis transac-
tion to the blockchain. This must be done
from the same cryptographic secret key, as
was used with the earlier recipe. The older
genesis transaction must also be recorded in
the recipe, so the chain of mutations can be
followed and approved by validators. When

a recipe is updated, the new recipe is passed
around to other nodes using over a decentral-
ized transport mechanism. Validators check a
new incoming recipe for validity first, by com-
paring its hashes with available data in the
blockchain, and authenticating that the up-
dated genesis transaction has been done using
the same secret key as the first genesis trans-
action. After this has been verified the new
data can be applied as an active recipe.

4.2 Recipe Verification

We may verify the example recipe by pulling
in the attachment data from the genesis
transaction, which is located on the Bitcoin
blockchain, and verifying the recipe contents
by calculating the hash of it (excluding the
genesis entry in the object), and comparing

that to the hash recorded in the transaction
data. It is also possible to record the genesis
validation transaction on multiple distributed
ledgers, to ensure deduplication of available
verification hash data.

4.3 Autonomous Distributed To-
ken Minting

When any actor can potentially launch a
cross-ledger token, we assume this may re-
sult in the creation of a lot of tokens. This
could be for a project or company asset, mere
experimentation, or it could be in order to
spam users. It is possible that the transaction
cost of the underlying ledger system is not
enough of a deterrent for those who want to
spam the system. To mitigate this we propose
the protocol ties a fee to the genesis of a new
token. This fee is distributed to all network
validators in order to incentivise the valida-
tion of transactions. We propose that issuance
fees are thus defined means we need not rely
on oracles, smart contracts or other complex
consensus mechanisms to autonomously and
decentrally govern the process of token is-
suance.

5 Mutation of Monetary
Supply

The monetary supply of a HRC1 token is mu-
table if this has been allowed by issue in the
economic rules of the recipe. There are sev-
eral ways in which the supply may be mu-
tated. By way of a transaction fee, minting

or burning. If a transaction fee is enforced by
the ruleset, the supply is subtracted from on
every transaction. The fee may be specified in
the recipe as a fixed amount, or as a percent-
age of the transaction. If this is enforced, a
transaction will not be valid without this fee.
In the case of minting, new units are added
to the available supply. If the initial supply of
the token is fixed, minting is only successful
as long as there are still tokens left to mint.

In the case of a limitless potential supply, an
inflation of the total amount of units occurs.
It is also possible to influence the monetary
supply of a HRC1 token by way of minting
in exchange for burning another monetary
unit. We avoid the problem of needing a rate
of exchange by only accepting the burning of
native assets on a recipe-defined ratio. A rate
of exchange must be defined by a price ticker
on the centralized or decentralized exchanges,
or the exchange rate is set by an oracle or a
gateway service that defines the rate. This
means burn transactions using the hybrix pro-
tocol do not depend on oracles or third par-
ties to be performed successfully.

6 Validation of Transac-
tions

6.1 Validation as a Service

External validation should be handled in a de-
centralized manner using a consensus amongst
multiple validator nodes. Such validators
nodes then basically provide verification as

a service (VAAS), which in turn results in the
inception of a validation market. The nodes
crawl the tree of transactions checking them
for validity.

Essentially this means that validators are
basically nodes that follow the branches of
transactions from the genesis transaction to a
final user balance ledger entry. They do this
for a fee that that is split among validators
and examinators of validators. To create in-
centives for validators to verify chain integrity,
we default to creating a reward structure that
is defined by the network.

transactions

ledger systems

Figure 4: hybrix chain validators

Users transferring large amounts of value have
a need to determine the validity of their bal-
ances, and they also likely have the capital to
pay for this service. In sending a transaction
they can opt to pay a higher fee, and this will
result in more validators eager to validate the
user’s chain of transactions. A side effect of
this is that it enables users that have less to
spend on fees to be validated automatically
on occasion, once their balance becomes part
of a transaction branch that has been sent on
to other users.

A state database containing the verified sub
tree is maintained by validators which can be
queried by users. A decentralized consensus
state database maintained by a pool of val-
idators will consist of a sub tree 7,/ where n
increments with each state update, providing
a snapshot of the agreed upon valid transac-
tion tree.

To ensure the recovery from a 51% attack on
any one single chain, snapshotting by valida-
tors could enable network users to request

the verification of the current ledger and bal-
ances state, regardless of a transaction history
tainted by 51% attack damage. Requesting
this from multiple validator sources could con-
firm to the user a properly accounted hybriz
ledger, in spite of a damaged ledger.

7 Examinations

7.1 Validating the Validators

Validators need to be rigorously examined

in order to find out if they are properly do-
ing their job of validating transactions on the
chains. In the case that all is going according
to plan validators check the transactions and
record their findings for the public truthfully.
However, in the case of malfeasance not every
validator may be trustworthy.

7.2 Previously Attempted Solu-
tions

Several approaches to validated ledger sys-
tems have been made to try and solve this
problem: who or what validates the work of
the validators? Omni for example has cho-
sen to validate from a centralized entity. This
markedly reduces the complexity of the solu-
tion, but is not desirable in a system where
one wants the decentralization to be as great
as possible. Next to that the workload for
validating the transactions grows over time,
which puts all this work on the centralized
validation entity. This decreases the secu-
rity and integrity of the transaction ledger
any time the centralized entity is not able to
validate momentarily for whatever reason.
Ripple, another example, has chosen a select
amount of validators that have a sizable stake
in the Ripple ecosystem to make sure trans-
actions are done properly. The sanction for
being a corrupt validator in Ripple is the pos-
sibility of having your stake reduced. This
can not be done in our case, however, since
hybriz is a more decentralized protocol. This
means we cannot simply reduce the stake of
any party in the network from an authorita-
tive entity. Instead, we only have the ability
to invalidate fees in hindsight according to the
errors of a validator. If these fees have already
been spent, however, executing such a disin-
centive could create a complicated situation
for multiple parties. Transaction reversals,

however, should only be an action of very last
resort.

8 Common hybrix Index

Storing the genesis transaction ID, or other
hash information in every transaction would
require a significant amount of blockchain
storage as the volume of transactions grows.
Some token protocols employ such a method,
even though it is not most efficient. The to-
ken protocol Omni, on the contrary, uses an
index number for the asset ID in every trans-
action. Doing that requires a public index to
be available. With Omni the registration of
new tokens must be administered in a cen-
tralized database, and by a trusted entity. We
define a method of posting information to a
ledger to replace the centralized index of to-
ken identification. This entails genesis type
transactions that contain a hash of the con-
tent of a recipe that defines the way a cross-
ledger asset works. This means the genesis
transaction can be used to verify the recipe
file that describes in detail the rules and prop-
erties of an asset.

In a hybrix asset recipe the identifier of the
asset is an index number. This index number
is passed along in every transaction, similar
to Omni. The difference is that the main in-
dex is a specific address to which new regis-
trations are posted, instead of a centralized
database and API. To avoid Sybil attacks®
and squatting of index numbers, we propose
the use of initiation burn values to accom-
pany the creation of a new asset class. This
way the validity of an asset can be verified by
looking up the corresponding burn value.

Storing the index in every transaction takes
up either 1 to 4 bytes of space. This makes
the indexes with the least amount of bytes
more desirable, since every transaction with
it will be slightly less expensive to store in a
digital ledger. On the other hand index num-
bers of a higher order that need more bytes
are also less scarce. For this reason we utilize

a costs table to ensure index numbers cannot
simply be taken.

Thus follows that registering a token on the
hybriz protocol requires a fee paid in hy to-
kens. This fee is then distributed to network
validators over the course of a year by the hy-
briz protocol. Initially this process will be
handled manually by the developers of the
hybrix protocol and subsequently automated.

According to the amount of bytes used for
the index, registration can be done in several
tiers, depending on the cap one would like
their token to be listed in. The caps that a hy
token may be listed in are: Primary, Medium,
Minor, Minute. We make a distinction so that
larger organizations pay for the network to
operate smoothly. In return they get the ben-
efit of utilizing less storage per transaction in
the ecosystem, the higher the tier.

Of the Primary tier, only 255 places are avail-
able. This is the largest registration cap, and
is intended for governments and large-scale
international businesses that need a very high
security in validation, expect a large flow of
transactions, and large market exposure. Fee
for listing is 150000 HY. Renewal fee is 15000
HY annually.

The Medium tier has 65535 places available.
This cap is intended for businesses that have
a sizable market share or IPO listing, need
proper validation, expect many transactions
and have medium market exposure. Fee for
listing is 15000 HY. Renewal fee is 1500 HY
annually.

The Minor tier has 16777215 places available.
This cap is for organizations or startups that
have a small market share, need occasional
validation, expect a few transactions and have

little market exposure. Fee for listing is 150
HY. Renewal fee is 15 HY annually.

The Minute tier has 4 294 967 295 places
available. This cap is for experimentation,
small projects and individuals who want to
put hybrix to work for them, expect very few
transactions and have almost no market ex-
posure. They can expect no validation, unless

they request it from the market. Fee for list-
ing is 15 HY. Renewal fee is 1.5 HY annually.

The above schema makes registering new
IDs more expensive as a blockchain or ledger
system’s base asset attains a higher market
value, and avoids indiscriminate spamming
of the blockchains. Thus the common hybrix
index is built using proof-of-payment oper-
ations. This provides us with two benefits.
First of all the amount of registration spam
is easily weeded out by analyzing the burn
value, and checking to see if it adheres to the
requirements for creating a new token. Sec-
ondly it injects value into the hybriz market
by allocating the initial go-to-market cost

on chain, and distributing it among the val-
idators. It has been shown that burning or
re-allocating economic value this way stimu-
lates the market with value and trust, as also
proven in previous blockchain projects like
Counterparty °

9 Deterministic Libraries
and API Connectors

We connect to a large variety of blockchain
APIs using a peer-to-peer network daemon
called hybrizd'®. This platform contains
recipes that include API connectors for a
plethora of distributed ledger and blockchain
systems. The calls made by this platform also
abstracts the responses of every system it
connects to back to a common format. The
platform further contains a mechanism for ac-
tivating deterministic libraries in a specific
manner so that these can only be used for
signing transactions, and expose abstracted
functions to the platform. Automated scripts
remove all unnecessary code and fetch calls
from external deterministic libraries, and cre-
ate a compressed and wrapped version of ev-
ery library as a byte-encoded package. These
small packages are used by hybriz-jslib'! the
javascript client-side library to sign transac-
tions in a secure way. Deterministic functions
are used to generate key pairs for all included

ledgers from a single base seed. We use the
fact that any address o € Ay is generated
from a key pair £ € K using a one way
transformation:

v K — Ag (1)

For a meta ledger we define a seed k € K I
that can be used to generate a corresponding
key pair in each base ledger using the function
XL 5

XL Kp = Ky, (2)
We can then use the following substitution to
reduce the required key pairs and addresses
for each base ledger in the example in section
7?7 to a single seed key kp:

ks = xpo(kp)
ke = xgc(kp)
ap = vYp(ks)
ap = Yp(kp)

As everything that has to do with determin-
istic transactions is handled from the single
seed key as defined above, no data needs to be
stored in order for a user to be able to recover
key pairs and use these to control the ledgers
the keys give access to. A module system in
hybrizd makes it possible for developers to
have their code integrate to a variety of trans-
port mechanisms and external APIs. Next to
that connector modules that query external
APIs expose these connections as abstracted
paths to which calls can be made that are ho-
mogenous. Modules can query each other as
well as be called from the top-level API. On
top of this stack the hybriz protocol is im-
plemented as a module. The full-stack com-
bination is a hybriz-jslib client, as well as a
complete hybrizd node. Where less computing
and storage resources are available a hybrix-
7slib client can be used to sign and interpret
transactions and get necessary data from a
publicly available hybrizd node APIL.

10 Conclusion

We have proposed a system for meta-level
transfers across multiple distributed ledgers

10

without relying on centralized exchanges or
decentralized atomic transaction compatibil-
ity. By design the system is open and trans-
parent. The process of moving value between
ledger systems is not controlled by a central-
ized party, as transactions can be created and
signed client-side and sent peer-to-peer among
users. We started with the usual framework
of second-layer tokens specified by storing
data attached to transactions, which pro-
vides a method of accounting on top of ex-
isting ledger systems, but is incomplete with-
out a way to prevent double-spending. To
solve this, we proposed a peer-to-peer cross-
systemic-ledger network of validators of which
said actors are incentivized to cryptographi-
cally verify the public history of second-layer
transactions. Their work is rewarded by users
in the network that need their ledger bal-
ance verified, and this simultaneously verifies
ledger balances of users that are the source of
the ledger state to be verified. Impostor at-
tacks on the protocol are mitigated by using
the consensus mechanisms of the underlying
ledger systems to thwart attempts at dou-
ble spending. Sybil attacks on the validator
network are minimized by way of a service
model on necessity basis. Apart from this,
the user is autonomously able to verify the
chain of transactions to ensure the authen-
ticity of their token balance. We proposed a
mechanism for creating new tokens without
the need for a centralized index. This pro-
vides users the possibility to autonomously
issue and mint second-layer electronic tokens.
Network fees to issue new tokens make token
squatting an expensive undertaking, in order

to keep the second layer protocol free of spam.

To ensure the recovery from a 51% attack on
any one single chain, we proposed a recipe
based protocol that enables a token issuer to
update the possible chains on which a token
can operate. Aside from this, snapshotting by
validators enables network users to verify the
current ledger and balances state, regardless
of transaction history tainted by 51% attack
damage.

11

Notes

»How Bitcoin is Changing Online Commerce”,
https://www.forbes.com/sites/johnrampton/2014/07/02/how-
bitcoin-is-changing-online-ecommerce

27Risks of Centralization in Crypto Ripple and
NEO”, https://medium.com/Qastralcrypto/risks-of-
centralization-in-crypto-ripple-and-neo-4ee2de358c1

3”The Real Threat From Facebooks$ Libra Coin”,
https://www.forbes.com/sites/francescoppola/2019/06/30/the-
real-threat-from-facebooks-libra-coin

47The Blockchain: An Experi-
ment in Governance Without Power”,
https://www.coindesk.com/blockchain-experiment-
governance-without-power

5” JPMorgan Plots Blockchain Payments
to Fight Transferwise, Ripple Threat”,
https://www.ccn.com/jpmorgan-blockchain-payments-
settlement-fintech-ripple

6 «Colored Coins”,
https://en.bitcoin.it/wiki/Colored _Coins

7 OP_RETURN”,
https://en.bitcoin.it/wiki/OP_RETURN

8»Wikipedia: Sybil attack”,
https://en.wikipedia.org/wiki/Sybil_attack

9”Why Proof-of-Burn”,
https://counterparty.io/news/why-proof-of-burn/

107 hybrixd”, https://github.com/hybrix-io/hybrixd

H» hybrix-jslib”, https://github.com/hybrix-
io/hybrix-jslib

